资源类型

期刊论文 245

年份

2023 8

2022 10

2021 11

2020 10

2019 15

2018 14

2017 25

2016 18

2015 23

2014 15

2013 8

2012 10

2011 17

2010 24

2009 14

2008 6

2007 7

2006 1

2005 1

2004 1

展开 ︾

关键词

海上风电场 9

海上风电 6

可再生能源 3

微波散射计 3

海上风机 3

风力发电 3

动力特性 2

可持续发展 2

台风 2

对策 2

应用 2

强台风 2

风机安装 2

风洞试验 2

700 MW级水电机组 1

CCS 1

CFD 1

CO2 捕集 1

CO2分离 1

展开 ︾

检索范围:

排序: 展示方式:

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

《机械工程前沿(英文)》 2016年 第11卷 第4期   页码 388-402 doi: 10.1007/s11465-016-0404-z

摘要:

Wind turbine gearbox (WTG), which functions as an accelerator, ensures the performance and service life of wind turbine systems. This paper examines the distinctive modal properties of WTGs through finite element (FE) and experimental modal analyses. The study is performed in two parts. First, a whole system model is developed to investigate the first 10 modal frequencies and mode shapes of WTG using flexible multi-body modeling techniques. Given the complex structure and operating conditions of WTG, this study applies spring elements to the model and quantifies how the bearings and gear pair interactions affect the dynamic characteristics of WTGs. Second, the FE modal results are validated through experimental modal analyses of a 1.5 WM WTG using the frequency response function method of single point excitation and multi-point response. The natural frequencies from the FE and experimental modal analyses show favorable agreement and reveal that the characteristic frequency of the studied gearbox avoids its eigen-frequency very well.

关键词: wind turbine gearbox     modal analysis     finite element analysis     modal frequency     bearing equivalence    

Tacholess order-tracking approach for wind turbine gearbox fault detection

Yi WANG, Yong XIE, Guanghua XU, Sicong ZHANG, Chenggang HOU

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 427-439 doi: 10.1007/s11465-017-0452-z

摘要:

Monitoring of wind turbines under variable-speed operating conditions has become an important issue in recent years. The gearbox of a wind turbine is the most important transmission unit; it generally exhibits complex vibration signatures due to random variations in operating conditions. Spectral analysis is one of the main approaches in vibration signal processing. However, spectral analysis is based on a stationary assumption and thus inapplicable to the fault diagnosis of wind turbines under variable-speed operating conditions. This constraint limits the application of spectral analysis to wind turbine diagnosis in industrial applications. Although order-tracking methods have been proposed for wind turbine fault detection in recent years, current methods are only applicable to cases in which the instantaneous shaft phase is available. For wind turbines with limited structural spaces, collecting phase signals with tachometers or encoders is difficult. In this study, a tacholess order-tracking method for wind turbines is proposed to overcome the limitations of traditional techniques. The proposed method extracts the instantaneous phase from the vibration signal, resamples the signal at equiangular increments, and calculates the order spectrum for wind turbine fault identification. The effectiveness of the proposed method is experimentally validated with the vibration signals of wind turbines.

关键词: wind turbine     variable-speed operating conditions     Vold-Kalman filtering     tacholess order tracking    

Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet

Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 406-419 doi: 10.1007/s11465-017-0419-0

摘要:

Planetary transmission plays a vital role in wind turbine drivetrains, and its fault diagnosis has been an important and challenging issue. Owing to the complicated and coupled vibration source, time-variant vibration transfer path, and heavy background noise masking effect, the vibration signal of planet gear in wind turbine gearboxes exhibits several unique characteristics: Complex frequency components, low signal-to-noise ratio, and weak fault feature. In this sense, the periodic impulsive components induced by a localized defect are hard to extract, and the fault detection of planet gear in wind turbines remains to be a challenging research work. Aiming to extract the fault feature of planet gear effectively, we propose a novel feature extraction method based on spectral kurtosis and time wavelet energy spectrum (SK-TWES) in the paper. Firstly, the spectral kurtosis (SK) and kurtogram of raw vibration signals are computed and exploited to select the optimal filtering parameter for the subsequent band-pass filtering. Then, the band-pass filtering is applied to extrude periodic transient impulses using the optimal frequency band in which the corresponding SK value is maximal. Finally, the time wavelet energy spectrum analysis is performed on the filtered signal, selecting Morlet wavelet as the mother wavelet which possesses a high similarity to the impulsive components. The experimental signals collected from the wind turbine gearbox test rig demonstrate that the proposed method is effective at the feature extraction and fault diagnosis for the planet gear with a localized defect.

关键词: wind turbine     planet gear fault     feature extraction     spectral kurtosis     time wavelet energy spectrum    

genetic algorithms based structural optimization and experimental investigation of the planet carrier in windturbine gearbox

Pengxing YI,Lijian DONG,Tielin SHI

《机械工程前沿(英文)》 2014年 第9卷 第4期   页码 354-367 doi: 10.1007/s11465-014-0319-5

摘要:

To improve the dynamic performance and reduce the weight of the planet carrier in wind turbine gearbox, a multi-objective optimization method, which is driven by the maximum deformation, the maximum stress and the minimum mass of the studied part, is proposed by combining the response surface method and genetic algorithms in this paper. Firstly, the design points’ distribution for the design variables of the planet carrier is established with the central composite design (CCD) method. Then, based on the computing results of finite element analysis (FEA), the response surface analysis is conducted to find out the proper sets of design variable values. And a multi-objective genetic algorithm (MOGA) is applied to determine the direction of optimization. As well, this method is applied to design and optimize the planet carrier in a 1.5 MW wind turbine gearbox, the results of which are validated by an experimental modal test. Compared with the original design, the mass and the stress of the optimized planet carrier are respectively reduced by 9.3% and 40%. Consequently, the cost of planet carrier is greatly reduced and its stability is also improved.

关键词: planet carrier     multi-objective optimization     genetic algorithms     wind turbine gearbox     modal experiment    

Weak characteristic information extraction from early fault of wind turbine generator gearbox

Xiaoli XU, Xiuli LIU

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 357-366 doi: 10.1007/s11465-017-0423-4

摘要:

Given the weak early degradation characteristic information during early fault evolution in gearbox of wind turbine generator, traditional singular value decomposition (SVD)-based denoising may result in loss of useful information. A weak characteristic information extraction based on µ-SVD and local mean decomposition (LMD) is developed to address this problem. The basic principle of the method is as follows: Determine the denoising order based on cumulative contribution rate, perform signal reconstruction, extract and subject the noisy part of signal to LMD and µ-SVD denoising, and obtain denoised signal through superposition. Experimental results show that this method can significantly weaken signal noise, effectively extract the weak characteristic information of early fault, and facilitate the early fault warning and dynamic predictive maintenance.

关键词: wind turbine generator gearbox     µ-singular value decomposition     local mean decomposition     weak characteristic information extraction     early fault warning    

Multiple fault separation and detection by joint subspace learning for the health assessment of windturbine gearboxes

Zhaohui DU, Xuefeng CHEN, Han ZHANG, Yanyang ZI, Ruqiang YAN

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 333-347 doi: 10.1007/s11465-017-0435-0

摘要:

The gearbox of a wind turbine (WT) has dominant failure rates and highest downtime loss among all WT subsystems. Thus, gearbox health assessment for maintenance cost reduction is of paramount importance. The concurrence of multiple faults in gearbox components is a common phenomenon due to fault induction mechanism. This problem should be considered before planning to replace the components of the WT gearbox. Therefore, the key fault patterns should be reliably identified from noisy observation data for the development of an effective maintenance strategy. However, most of the existing studies focusing on multiple fault diagnosis always suffer from inappropriate division of fault information in order to satisfy various rigorous decomposition principles or statistical assumptions, such as the smooth envelope principle of ensemble empirical mode decomposition and the mutual independence assumption of independent component analysis. Thus, this paper presents a joint subspace learning-based multiple fault detection (JSL-MFD) technique to construct different subspaces adaptively for different fault patterns. Its main advantage is its capability to learn multiple fault subspaces directly from the observation signal itself. It can also sparsely concentrate the feature information into a few dominant subspace coefficients. Furthermore, it can eliminate noise by simply performing coefficient shrinkage operations. Consequently, multiple fault patterns are reliably identified by utilizing the maximum fault information criterion. The superiority of JSL-MFD in multiple fault separation and detection is comprehensively investigated and verified by the analysis of a data set of a 750 kW WT gearbox. Results show that JSL-MFD is superior to a state-of-the-art technique in detecting hidden fault patterns and enhancing detection accuracy.

关键词: joint subspace learning     multiple fault diagnosis     sparse decomposition theory     coupling feature separation     wind turbine gearbox    

Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue

Yun-Shuai SU, Shu-Rong YU, Shu-Xin LI, Yan-Ni HE

《机械工程前沿(英文)》 2019年 第14卷 第4期   页码 434-441 doi: 10.1007/s11465-018-0474-1

摘要: Wind turbine gearbox bearings fail with the service life is much shorter than the designed life. Gearbox bearings are subjected to rolling contact fatigue (RCF) and they are observed to fail due to axial cracking, surface flaking, and the formation of white etching areas (WEAs). The current study reviewed these three typical failure modes. The underlying dominant mechanisms were discussed with emphasis on the formation mechanism of WEAs. Although numerous studies have been carried out, the formation of WEAs remains unclear. The prevailing mechanism of the rubbing of crack faces that generates WEAs was questioned by the authors. WEAs were compared with adiabatic shear bands (ASBs) generated in the high strain rate deformation in terms of microstructural compositions, grain refinement, and formation mechanism. Results indicate that a number of similarities exist between them. However, substantial evidence is required to verify whether or not WEAs and ASBs are the same matters.

关键词: rolling contact fatigue (RCF)     white etching area (WEA)     white etching crack (WEC)     adiabatic shear band (ASB)    

Effect of friction coefficients on the dynamic response of gear systems

Lingli JIANG, Zhenyong DENG, Fengshou GU, Andrew D. BALL, Xuejun LI

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 397-405 doi: 10.1007/s11465-017-0415-4

摘要:

The inevitable deterioration of the lubrication conditions in a gearbox in service can change the tribological properties of the meshing teeth. In turn, such changes can significantly affect the dynamic responses and running status of gear systems. This paper investigates such an effect by utilizing virtual prototype technology to model and simulate the dynamics of a wind turbine gearbox system. The change in the lubrication conditions is modeled by the changes in the friction coefficients, thereby indicating that poor lubrication causes not only increased frictional losses but also significant changes in the dynamic responses. These results are further demonstrated by the mean and root mean square values calculated by the simulated responses under different friction coefficients. In addition, the spectrum exhibits significant changes in the first, second, and third harmonics of the meshing components. The findings and simulation method of this study provide theoretical bases for the development of accurate diagnostic techniques.

关键词: dynamic response     friction coefficient     wind loads     wind turbine gearbox    

Condition monitoring of a wind turbine generator using a standalone wind turbine emulator

Himani,Ratna DAHIYA

《能源前沿(英文)》 2016年 第10卷 第3期   页码 286-297 doi: 10.1007/s11708-016-0419-5

摘要: The intend of this paper is to give a description of the realization of a low-cost wind turbine emulator(WTE) with open source technology from graze required for the condition monitoring to diagnose rotor and stator faults in a wind turbine generator (WTG). The WTE comprises of a 2.5 kW DC motor coupled with a 1 kW squirrel-cage induction machine. This paper provides a detailed overview of the hardware and software used along with the WTE control strategies such as MPPT and pitch control. The emulator reproduces dynamic characteristics both under step variations and arbitrary variation in the wind speed of a typical wind turbine (WT) of a wind energy conversion system (WECS). The usefulness of the setup has been benchmarked with previously verified WT test rigs made at the University of Manchester and Durham University in UK. Considering the fact that the rotor blades and electric subassemblies direct drive WTs are most susceptible to damage in practice, generator winding faults and rotor unbalance have been introduced and investigated using the terminal voltage and generated current. This wind turbine emulator (WTE) can be reconfigured or analyzed for condition monitoring without the need for real WTs.

关键词: condition monitoring (CM)     wind turbine emulator (WTE)     wind turbine generator (WTG)     maximum power point tracking (MPPT)     tip speed ratio (TSR)     rotor faults     stator faults    

Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives

Pinting ZHANG, Shuhong HUANG

《能源前沿(英文)》 2011年 第5卷 第4期   页码 419-434 doi: 10.1007/s11708-011-0166-6

摘要: Aeroelasticity has become a critical issue for Multi-Megawatt wind turbine due to the longer and more flexible blade. In this paper, the development of aeroelasticity and aeroelastic codes for wind turbine is reviewed and the aeroelastic models for wind turbine blade are described, based on which, the current research focuses for large scale wind turbine are discussed, including instability problems for onshore and offshore wind turbines, effects of complex inflow, nonlinear effects of large blade deflection, smart structure technologies, and aerohydroelasticity. Finally, the future development of aeroelastic code for large scale wind turbine: aeroservoelasticity and smart rotor control; nonlinear aeroelasticity due to large blade deflection; full-scale 3D computational fluid dynamics (CFD) solution for dynamics; and aerohydroelasticity are presented.

关键词: wind turbine     aeroelasticity     aeroelastic code    

Optimization design of spar cap layup for wind turbine blade

Jie ZHU, Xin CAI, Pan PAN, Rongrong GU

《结构与土木工程前沿(英文)》 2012年 第6卷 第1期   页码 53-56 doi: 10.1007/s11709-012-0147-9

摘要: Based on the aerodynamic shape and structural form of the blade are fixed, a mathematical model of optimization design for wind turbine blade is established. The model is pursued with respect to minimum the blade mass to reduce the cost of wind turbine production. The material layup numbers of the spar cap are chosen as the design variables; while the demands of strength, stiffness and stability of the blade are employed as the constraint conditions. The optimization design for a 1.5 MW wind turbine blade is carried out by combing above objective and constraint conditions at the action of ultimate flapwise loads with the finite element software ANSYS. Compared with the original design, the optimization design result achieves a reduction of 7.2% of the blade mass, the stress and strain distribution of the blade is more reasonable, and there is no occurrence of resonance, therefore its effectiveness is verified.

关键词: wind turbine blade     spar cap layup     optimization design     blade mass    

Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate

《结构与土木工程前沿(英文)》   页码 1086-1099 doi: 10.1007/s11709-023-0976-8

摘要: Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate model

关键词: RBF     surrogate model     turbine support structures    

Effects of elastic support on the dynamic behaviors of the wind turbine drive train

Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN

《机械工程前沿(英文)》 2017年 第12卷 第3期   页码 348-356 doi: 10.1007/s11465-017-0420-7

摘要:

The reliability and service life of wind turbines are influenced by the complex loading applied on the hub, especially amidst a poor external wind environment. A three-point elastic support, which includes the main bearing and two torque arms, was considered in this study. Based on the flexibilities of the planet carrier and the housing, a coupled dynamic model was developed for a wind turbine drive train. Then, the dynamic behaviors of the drive train for different elastic support parameters were computed and analyzed. Frequency response functions were used to examine how different elastic support parameters influence the dynamic behaviors of the drive train. Results showed that the elastic support parameters considerably influenced the dynamic behaviors of the wind turbine drive train. A large support stiffness of the torque arms decreased the dynamic response of the planet carrier and the main bearing, whereas a large support stiffness of the main bearing decreased the dynamic response of planet carrier while increasing that of the main bearing. The findings of this study provide the foundation for optimizing the elastic support stiffness of the wind turbine drive train.

关键词: wind turbine drive train     elastic support     dynamic behavior     frequency response function    

A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control

Abdelhak DIDA,Djilani BENATTOUS

《能源前沿(英文)》 2016年 第10卷 第2期   页码 143-154 doi: 10.1007/s11708-016-0402-1

摘要: The current paper talks about the variable speed wind turbine generation system (WTGS). So, the WTGS is equipped with a doubly-fed induction generator (DFIG) and two bidirectional converters in the rotor open circuit. A vector control (VC) of the rotor side converter (RSC) offers independent regulation of the stator active and reactive power and the optimal rotational speed tracking in the power maximization operating mode. A VC scheme for the grid-side converter (GSC) allows an independent regulation of the active and reactive power to exchange with the grid and sinusoidal supply currents and keeps the DC-link voltage constant. A fuzzy inference system (FIS) is adopted as an alternative of the conventional proportional and integral (PI) controller to reject some uncertainties or disturbance. The performances have been verified using the Matlab/Simulink software.

关键词: wind turbine generation system (WTGS)     doubly-fed induction generator (DFIG)     maximum power point tracking (MPPT)     vector control (VC)     fuzzy logic controller (FLC)    

Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations

Islam HASHEM, Aida A. HAFIZ, Mohamed H. MOHAMED

《能源前沿(英文)》 2022年 第16卷 第4期   页码 661-682 doi: 10.1007/s11708-020-0713-0

摘要: Wind-lens turbines (WLTs) exhibit the prospect of a higher output power and more suitability for urban areas in comparison to bare wind turbines. The wind-lens typically comprises a diffuser shroud coupled with a flange appended to the exit periphery of the shroud. Wind-lenses can boost the velocity of the incoming wind through the turbine rotor owing to the creation of a low-pressure zone downstream the flanged diffuser. In this paper, the aerodynamic performance of the wind-lens is computationally assessed using high-fidelity transient CFD simulations for shrouds with different profiles, aiming to assess the effect of change of some design parameters such as length, area ratio and flange height of the diffuser shroud on the power augmentation. The power coefficient ( ) is calculated by solving the URANS equations with the aid of the SST model. Furthermore, comparisons with experimental data for validation are accomplished to prove that the proposed methodology could be able to precisely predict the aerodynamic behavior of the wind-lens turbine. The results affirm that wind-lens with cycloidal profile yield an augmentation of about 58% increase in power coefficient compared to bare wind turbine of the same rotor swept-area. It is also emphasized that diffusers (cycloid type) of small length could achieve a twice increase in power coefficient while maintaining large flange heights.

关键词: shroud     diffuser-augmented wind turbine (DAWT)     Betz limit     aerodynamics     computational fluid dynamics (CFD)    

标题 作者 时间 类型 操作

Numerical analysis and experimental investigation of modal properties for the gearbox in wind turbine

Pengxing YI,Peng HUANG,Tielin SHI

期刊论文

Tacholess order-tracking approach for wind turbine gearbox fault detection

Yi WANG, Yong XIE, Guanghua XU, Sicong ZHANG, Chenggang HOU

期刊论文

Fault feature extraction of planet gear in wind turbine gearbox based on spectral kurtosis and time wavelet

Yun KONG, Tianyang WANG, Zheng LI, Fulei CHU

期刊论文

genetic algorithms based structural optimization and experimental investigation of the planet carrier in windturbine gearbox

Pengxing YI,Lijian DONG,Tielin SHI

期刊论文

Weak characteristic information extraction from early fault of wind turbine generator gearbox

Xiaoli XU, Xiuli LIU

期刊论文

Multiple fault separation and detection by joint subspace learning for the health assessment of windturbine gearboxes

Zhaohui DU, Xuefeng CHEN, Han ZHANG, Yanyang ZI, Ruqiang YAN

期刊论文

Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue

Yun-Shuai SU, Shu-Rong YU, Shu-Xin LI, Yan-Ni HE

期刊论文

Effect of friction coefficients on the dynamic response of gear systems

Lingli JIANG, Zhenyong DENG, Fengshou GU, Andrew D. BALL, Xuejun LI

期刊论文

Condition monitoring of a wind turbine generator using a standalone wind turbine emulator

Himani,Ratna DAHIYA

期刊论文

Review of aeroelasticity for wind turbine: Current status, research focus and future perspectives

Pinting ZHANG, Shuhong HUANG

期刊论文

Optimization design of spar cap layup for wind turbine blade

Jie ZHU, Xin CAI, Pan PAN, Rongrong GU

期刊论文

Reliability-based design optimization of offshore wind turbine support structures using RBF surrogate

期刊论文

Effects of elastic support on the dynamic behaviors of the wind turbine drive train

Shuaishuai WANG, Caichao ZHU, Chaosheng SONG, Huali HAN

期刊论文

A complete modeling and simulation of DFIG based wind turbine system using fuzzy logic control

Abdelhak DIDA,Djilani BENATTOUS

期刊论文

Characterization of aerodynamic performance of wind-lens turbine using high-fidelity CFD simulations

Islam HASHEM, Aida A. HAFIZ, Mohamed H. MOHAMED

期刊论文